APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B. TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks Marks

Name:

1	a)	Convert the following numbers to the base indicated:					
	-	i) $(1542)_8$ to base 10 ii) $(52.35)_{10}$ to base 2					
		iii) $(AD.4)_{\rm H}$ to base 8 iv) $(1456.125)_{10}$ to base 16					
	b)	Using K map design a 3 bit Binary to Gray code converter.	(9)				
2	a)	Perform the following binary arithmetic using 1's complement and 2's complement.					
2		i) 76.75 - 146.625 ii) 77.5 - 34.25					
	b)	Implement the following Boolean function using 8:1 Multiplexer.					
		$F(A, B, C, D) = \overline{A}\overline{B}\overline{C} + B\overline{C}\overline{D} + \overline{A}CD + AC\overline{D}$					
2	2)	Design a combinational singuit to common two 2 hit numbers $A(A, A)$ and	(10)				

- a) Design a combinational circuit to compare two 2-bit numbers $A(A_1A_0)$ and (10) 3 $B(B_1B_0)$ and generate outputs f1 = A > B, f2 = A = B and f3 = A < B.
 - b) How is the Hamming code word generated? The message "1001001" is coded in (5) the 7-bit even parity Hamming code, which is transmitted through a noisy channel. Decode the message, assuming that at most a single error occurred in each code word.

PART B

Answer any two full questions, each carries 15 marks

- 4 a) Draw the circuit diagram of CMOS NOR gate and explain the working with truth (5) table.
 - b) Realize the following: (10)i) T flip-flop using SR flip-flop ii) JK flip-flop using D flip-flop (7)
- a) Implement the following functions using PLA. 5

$$F_1 = \sum_m (3,5,7)$$

$$F_2 = \sum_m (4,5,7)$$

- b) Realize a T flip-flop using NAND gates and explain the operation with truth table, (5)excitation table and characteristic equation.
- c) What is race around condition? How it is avoided?
- 6 a) Design a MOD-6 synchronous counter using JK flip-flop. When the counter enters (10)an unused state, the counter has to start counting from 0. Draw the timing diagram and complete logic diagram.
 - b) Define the terms noise margin, propagation delay and power dissipation of logic (5) families. Compare TTL and CMOS logic families showing the values of above mentioned terms.

E

(3)

E3836

Ε

PART C

Answer any two full questions, each carries 20 marks

- 7 a) With the logic diagram explain the working of a four bit bi-directional Serial in (10) Serial out (SISO) shift register with mode control.
 - b) Reduce the following state table using equivalence class state reduction technique. (10)

Present state Next state and output					
	X=0		X=1		
SO	S0	0	S1	0	
S1	S4	0	S2	0	
S2	S7	0	S 1	0	
S3	S2	1	S6	0	
S4	S6	0	S5	0	
S5	S5	1	S4	1	
S6	S1	1	S6	0	
S7	S3	0	S 8	0	
S8	S 8	1	S 7	1	

8

(20)

(7)

- Obtain the state diagram for a sequence detector to detect the sequence 1010, generate the state table, transition table, excitation table and implement using D flip flop. When the sequence is detected output z = 1, overlapping of sequence is permitted.
- 9 a) Draw the logic diagram of a 4-bit ring counter and explain the working with (8) timing diagram.
 - b) Reduce the following state table using implication chart technique.

Present state Next state and output							
	X=0		X=1				
SO	S4	0	S2	0			
S1	S2	0	S 0	0			
S2	S 1	0	S6	0			
S3	S6	0	S 0	0			
S4	S5	1	S 1	0			
S5	S4	0	S3	0			
S6	S3	0	S6	0			

c)

Differentiate Moore and Mealy models with examples.

(5)
